Note

A derivative of chitosan and 2,4-pentanedione with strong chelating properties

Manuel Gómez-Guillén, Antonio Gómez-Sánchez and María-Eloísa Martín-Zamora

Departamento de Química Orgánica "Profesor García González" and Instituto de la Grasa y sus Derivados (C.S.I.C.), Universidad de Sevilla, Apartado de Correos No. 553, 41071 Seville (Spain)

(Received October 22nd, 1991; accepted March 16th, 1992)

The chelating properties of chitosan (1) can be enhanced when the amino groups are substituted to give derivatives (e.g., NHCH₂CO₂H) that have a stronger chelating ability ^{1,2}. Some of these derivatives have industrial ² and medical ³ applications. Several N-benzylidenechitosans have been described ⁴, among which the N-salicylidene derivative ⁵ (2) had increased chelating capacity against Cu(II). Since derivatives (3) from amines and 1,3-dicarbonyl compounds are good metal chelators ⁶, the preparation and chelating properties of similar derivatives of chitosan were investigated. 2-Amino-2-deoxy-D-glucose reacts with 1,3-dicarbonyl compounds to afford N-acylvinyl derivatives, for example, 4 from 2,4-pentanedione ⁷. We now report on the corresponding derivative (5) of chitosan (1).

Treatment of chitosan (1, NAc 13%) with 3 mol of 2,4 pentanedione per 2-amino-2-deoxyglucosyl residue yielded (94%) a white, water-insoluble, amorphous polysaccharide amino-enone derivative 5. The elemental analysis agreed with structure 5 (NAc 13%) and a degree of substitution (ds) of 1.00. The IR spectrum contained bands at 1607 and 1566 cm⁻¹ for the intramolecularly bonded amino-enone system, as shown⁷ by the monomeric analogue 4. The structure 5 was confirmed by comparison of its solid-state CP-MAS spectrum with that of 4 and with that of the methyl β -pyranoside derivative 6 in solution (Table I). Although treatment of 5 with M HCl at room temperature regenerated chitosan (90–92%) and 2,4-pentanedione (94%) in agreement with a ds of 1.00, 5 was stable at room temperature in the pH range 3–9.

Correspondence to: Professor A. Gómez-Sánchez, Departamento de Química Orgánica "Profesor García González" and Instituto de la Grasa y sus Derivados (C.S.I.S.), Universidad de Sevilla, Apartado de Correos No. 553, 41071 Seville, Spain.

$$CH_{3}-C \stackrel{R}{\longrightarrow} H$$

$$CH_{3}-$$

Copper(II) acetate and Co(II) acetate reacted readily with 5 in aqueous solution at pH 5 to produce the coloured complexes, Cu(II)-5 and Co(II)-5, which incorporated 94% of the metal required for chelates with metal: 2-amino-2-deoxyglucosyl residue ratios of 1:2, corresponding to the partial structure 7 as found⁶ for metal chelates derived from the simple ligands 3. The copper-chelating capacity of 5 [2.28 mmol of Cu(II) per g] is enhanced by a factor of 38 over that [0.06 mmol of Cu(II) per g] recorded⁵ for chitosan and is similar to those [0.62 and 3.29 mmol of Cu(II) per g] reported⁵ for 2 under different conditions. The metals could not be displaced from Cu(II)-5 and Co(II)-5 by ammonia, sodium acetate, or oxalic acid, but were totally or partially displaced by EDTA and 2,4-pentanedione. These results indicate a stability constant (k_s) in the ranges $10^{12}-10^{14}$ for Cu(II)-5 and 10^5-10^9 for Co(II)-5.

Because of its enhanced chelating ability and its easy and inexpensive preparation, 5 may find application in those areas where 1 and some of its derivatives have proved to be useful.

EXPERIMENTAL

General methods.—Chitosan (1) from krill was supplied by the Sea Fisheries Institute (Gdynia, Poland) and its NAc content (13%) was determined by elemental analysis and IR spectroscopy⁹.

TABLE I	
¹³ C NMR data (δ , ppm) for 4 and 5 as solids (at 75.4 MHz) and for 6 as a solution in Me ₂ SO- d_6 (at 50	1.3
MHz)	

Assignment	Compound			
	(Solid)		(In solution)	
	4	5	6	
CH ₃ C=C	20.13	19.97	19.58	
$CH_3C=O(4')$	27.97	27.82	28.81	
CH ₃ O	_	_	56.56	
C-2	57.43	60.88	59.59	
C-6	60.49	60.88	60.97	
C-4	69.31	84.61 a	70.60	
C-3	70.43	75.51	75.58	
C-5	75.98	79.50	76.78	
C-1α	91.31	_	_	
C-2'	95.29	98.75	95.42	
C-1β	96.31	105.53	102.82	
C-1'	166.43	168.00	164.01	
C=O (3')	193.23	195.35	193.32	

^a The chemical shift reflects the $(1 \rightarrow 4)$ linkages; cf. 82.9 and 81.1 ppm for chitin and chitosan⁸, respectively.

Anal. Calcd for $[(C_6H_{11}NO_4)_{0.87}(C_8H_{13}NO_5)_{0.13} \cdot 0.8H_2O]_n$: C, 41.53; H, 7.16; N, 7.74. Found: C, 41.21; H, 6.77; N, 7.68.

IR spectra were recorded for KBr discs with a Bomem MB-120 spectrophotometer and compounds were identified by comparison of IR spectra. ¹³C CP-MAS NMR spectra (75.4 MHz) were recorded with a Bruker MSL-300 spectrometer and ¹³C NMR spectra (50.3 MHz) on solutions with a Varian XL-200 spectrometer.

- 2,4-Pentanedione was determined by spectrophotometry of its Fe(III) chelate¹⁰ with a Beckman DU-7 apparatus; Cu and Co contents of the metal complexes were determined by atomic absorption analysis with a Perkin-Elmer 2380 apparatus.
- $(1 \rightarrow 4)$ -2-[Z-(2-Acetyl-1-methylvinyl)amino]-2-deoxy- β -D-glucan (5).—(a) Preparation. To a stirred solution of 1 (1.0 g, 5.5 mmol) in 1:1 MeOH-aq 10% acetic acid (80 mL) was added a solution of 2,4-pentanedione (1.65 g, 16.5 mmol) in MeOH. After 4 h, the soft yellow gel was washed successively with MeOH, EtOH and ether, then dialysed against water for 24 h, freeze-dried, and dried at $100^{\circ}/1$ torr to give 5 (1.32 g, 94%) as a white powder. Analytical samples, dried at $100^{\circ}/0.02$ torr, had ν_{max} 3441 (NH and OH), 1607 and 1566 cm⁻¹ (intramolecularly bonded O=C-C=C-N-H). For the ¹³C CP-MAS NMR data, see Table I.

Anal. Calcd for $[(C_{11}H_{17}NO_5)_{0.87}(C_8H_{13}NO_5)_{0.13} \cdot H_2O]_n$: C, 49.76; H, 7.27; N, 5.47. Found: C, 49.71; H, 7.16; N, 5.06.

(b) Hydrolysis. A solution of 5 (0.10 g) in M HCl (20 mL) was stored at 20° for 1 h, then dialysed against water, freeze-dried, and dried in vacuo to give chitosan hydrochloride (0.078 g, 92%); 94% of 2,4-pentanedione was present in the hydrolysate.

- (c) Stability. Suspensions of 5 (0.02 g) in buffer solutions of pH 0-10 were shaken at room temperature. Aliquots (1.0 mL) were taken at intervals (0-48 h) and diluted to 25.0 mL, and the 2,4-pentanedione content was determined. No β -diketone was released in the pH range 3-9.
- (d) Chelate formation with Cu(II) and Co(II). A suspension of 5 (0.10 g) in satd aq Cu(II) acetate or Co(II) acetate (50 mL) was stirred vigorously at room temperature for 12 h. The solid, Cu(II)-5 or Co(II)-5, was collected, washed thoroughly with water, dialysed against water, freeze-dried, and dried in vacuo.

Each complex (0.10 g) was digested with hot concd HNO₃. The residue was dissolved in water, the solution was diluted to 100 mL, and aliquots (1.0 mL) were used for atomic absorption analysis. The ratios metal:polysaccharide were as follows: Cu(II)-5, 145 mg of Cu(II)/g of chitosan [0.41 mol Cu(II)/mol 2-amino-2-deoxyglucosyl unit]; and Co(II)-5, 133 mg of Co(II)/g of chitosan [0.41 mol Co(II)/mol 2-amino-2-deoxyglucosyl unit]. Calculated for a 1:2 metal:2-amino-2-deoxyglucosyl unit stoichiometry: 0.435 mol/mol.

Stability of Cu(II)-5 and Co(II)-5.—A suspension of each complex (10.0 mg) in water (5 mL) was stirred at room temperature for 48 h with an aqueous or methanolic solution (5 mL) of a stoichiometric amount of each ligand (L) (in brackets, the stability constants, k_s)¹¹.

Disodium EDTA [17.2 mg for the formation of the CuL_2 complex $(k_s \ 10^{18.8})$, or 16.8 mg for the formation of the CoL_2 complex $(k_s \ 10^{16.3})$] gave 5.

With 2,4-pentanedione [4.6 mg for the CuL_2 complex (k_s $10^{14.3}$), or 4.5 mg for the CoL_2 complex, (k_s $10^{8.9}$)], Cu(II)-5 afforded the violet solid Cu(II) acetylacetonate immediately, and Co(II)-5 gave 5.

Ammonia had no effect when bubbled through a suspension of Cu(II)-5 in MeOH. Likewise, oxalic acid dihydrate [5.9 mg for the CuL₂ complex (k_s 10^{8.9}), or 5.7 mg for the CoL₂ complex (k_s 10^{5.8})] and sodium acetate trihydrate [9.3 mg for the CuL₃ complex (k_s 10^{3.1}), or 6.0 mg for the CoL₂ complex (k_s 10^{1.5})] did not react with Cu(II)-5 or Co(II)-5.

ACKNOWLEDGMENTS

We thank the Comisión Interministerial de Ciencia y Tecnología (C.I.C.Y.T.) for financial support (Project PB87-0454), Dr. M.M. Brzeski of the Sea Fisheries Institute (Gdynia, Poland) for a generous gift of chitosan, the Instituto de Ciencias de Materiales (C.S.I.C., Madrid) for the ¹³C CP-MAS NMR spectra, the Departamento de Química Analítica (Universidad de Sevilla) for the microanalyses and atomic absorption analyses, and the Ministerio de Educación y Ciencia of Spain for a fellowship (to M.E.M.Z.).

REFERENCES

1 R.A.A. Muzzarelli, F. Tanfani, M. Emanuelli, and S. Mariotti, Carbohydr. Res., 107 (1982) 199-214; R.A.A. Muzzarelli, F. Tanfani, and M. Emanuelli, Biotechnol. Bioeng., 27 (1985) 1115-1121.

- 2 R.A.A. Muzzarelli, in R. Muzzarelli, C. Jeuniaux, and G.W. Gooday (Eds.), *Chitin in Nature and Technology*, Plenum Press, New York, 1986, pp 321-330.
- 3 G. Biagini, A. Pugnaloni, G. Frongia, G. Gazzanelli, C. Lough, and R.A.A. Muzzarelli, in G. Skjäk-Braek, T. Anthonsen, and P. Sanford (Eds.), *Chitin and Chitosan*, Elsevier Applied Science, London, 1989, pp 671-677.
- 4 L.A. Nud'ga, E.A. Plisko, and S.N. Danilov, Zh. Obshch. Khim., 43 (1973) 2752-2756; S. Hirano, N. Matsuda, O. Miura, and H. Iwaki, Carbohydr. Res., 71 (1979) 339-343.
- 5 L.D. Hall and M. Yalpani, Carbohydr. Res., 83 (1980) c5-c7; L.D. Hall and T.K. Lim, ibid., 148 (1986) 13-23.
- 6 P.J. McCarthy, R.J. Hovey, K. Ueno, and A.E. Martell, J. Am. Chem. Soc., 77 (1955) 5820-5824; R.J. Hovey, J.J. O'Connell, and A.E. Martell, ibid., 81 (1959) 3189-3192.
- 7 F. García González, A. Gómez Sánchez, and M.I. Goñi de Rey, Carbohydr. Res., 1 (1965) 261-273.
- 8 M. Takai, Y. Shimizu, J. Hayashi, Y. Uraki, and S. Tokura, ref. 3, pp 431-436.
- 9 M. Miya, R. Iwamoto, S. Yoshikawa, and S. Mima, Int. J. Biol. Macromol., 2 (1980) 323-324.
- 10 I.M. Korenman and M.I. Gryaznova, Tr. Khim. Khim. Tekhnol., (1970) 72-73; Chem. Abstr., 76 (1972) 135583.
- 11 A. Ringbom, Formación de Complejos en Química Analítica, Alhambra, Madrid, 1979, pp 351-379.